中文天堂在线www_一边啪啪一边呻吟av夜夜嗨_国产熟妇疯狂4p交在线播放_狠狠久久永久免费观看_国产女人好紧好爽

技術文章

Technical articles

當前位置:首頁技術文章等離子體處理對 硅表面氧空位缺陷工程

等離子體處理對 硅表面氧空位缺陷工程

更新時間:2020-12-02點擊次數(shù):3109

Electronic Supplementary Information For

Surface oxygen vacancy defect engineering of p-CuAlO2 via Ar&H2 plasma

treatment for enhancing VOCs sensing performances

Bin Tong, a b Gang Meng, * a c Zanhong Deng, a c Mati Horprathum, d Annop

Klamchuen e and Xiaodong Fang * a c

aAnhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine

Mechanics, Chinese Academy of Sciences, Hefei, 230031, China

bUniversity of Science and Technology of China, Hefei 230026, China

cKey Lab of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei

230031, China

d Opto-Electrochemical Sensing Research Team, National Electronic and Computer Technology Center,

PathumThani 12120, Thailand

eNational Nanotechnology Center, National Science and Technology Development Agency, Pathum

Thani 12120, Thailand

 

Experimental Section

1.1 Synthesis of CuAlO2 particles

First of all, 0.04 mol Cu(CH3COO)2·H2O (Alfa Aesar, 99.9%) was dissolved in 160 mL absolute alcohol with

vigorous stirring, and then 16 mL HNO3 (Sinopharm Chemical Reagent, 99.7%), 0.2 mol C6H8O7·H2O

(Sinopharm Chemical Reagent, 99.8%) and 0.04 mol Al[OCH(CH3)CH2CH3]3 (Alfa Aesar, 97%) were added into

the above solution in sequence. After stirring for 6 hours, 16 mL HNO3 was added to the solution drop by drop to

obtain a well-mixed precursor solution. The precursor solution was dried at 100 °C overnight. In order to remove

the organics, the condensed solution was heated to 300 °C for 6 hours. After that, the dried powders were milled

for 24 h using a planetary ball miller and then annealed at 1100 °C for 10 h under air atmosphere. Subsequently,

the powders were reground and heated to 950 °C under flowing N2 atmosphere for 6 hours to form delafossite

CuAlO2 particles. To ensure the pure phase of delafossite CuAlO2, trace (excess) CuxO was washed with 1 M

diluted hydrochloric acid, 11 deionized water and absolute alcohol in sequence several times, and the final products

were dried in an oven at 80 °C for 24 h.

1.2 Fabrication of CuAlO2 sensors

The CuAlO2 slurry was prepared by dispersing the powders in appropriate isopropyl alcohol. CuAlO2 sensors

were prepared by brushing the above paste onto a thin alumina substrate with micro-interdigital Pt electrodes.

CuAlO2 films on slide glass substrates were fabricated simultaneously for characterization. After naturally drying,

the CuAlO2 sensors and films were heated at 350 °C under flowing air atmosphere for 3 hours. Afterwards, the

samples were treated by Ar&H2 plasma in KT-S2DQX (150 W, 13.56 MHz, (鄭州科探儀器設備有限公司)) plasma etching system

at 10 sccm 4% H2 in Ar and the pressure of ~ 99.8 Pa for 30 min, 60 min and 90 min, herein are referred to as

pristine, PT-30, PT-60 and PT-90.

1.3 Characterization and gas sensing test

CuAlO2 samples were characterized by X-ray diffraction (XRD, Rigaku Smartlab), scanning electron

microscope (SEM, VEGA3 TESCAN), field emission high resolution transmission electron microscope

(HRTEM, Talos F200X), X-ray photoelectron spectroscopy (XPS, Thermo Scientific Esca Lab 250Xi

spectrometer ), photoluminescence (PL, JY Fluorolog-3-Tou) and Electron spin resonance (ESR, JEOL, JES

FA200 ESR spectrometer ). Mott-Schottky measurements were carried out on an electrochemical work-station

(Zahner Company, Germany) in 1M NaOH solution (pH=12.5) with frequency of 5000 Hz. Platinum sheet,

Ag/AgCl electrode and pristine/ PT-30 CuAlO2 samples were used as counter electrode, reference electrode and

work electrode, respectively. Gas sensing tests were examined in SD101 (Hua Chuang Rui Ke Technology Co.,

Ltd.) sensing system. The response was defined as ΔR/Ra, ΔR = Rg Ra, where Ra and Rg are sensor resistance in

 

flowing drying air and synthetic VOCs, respectively. During gas sensing test, the total flow rate of the dry air and

VOCs gas were adjusted to be 1000 sccm by mass flow controllers (MFCs).

 

Fig. S1. Cross-sectional SEM image of typical CuAlO2 sensors. The inset shows a low-magnification image.

The sensing layer is comprised of loosely packed CuAlO2 particles, with a thickness of ~ 15 μm

 

 

Fig. S2. XRD patterns of pristine and Ar&H2 plasma treated CuAlO2 sensors. Ar&H2 plasma treatment didn’t

cause any detectable impurity phase. All the samples show a 3R (dominent) and 2H mixed CuAlO2 phase.

 

Fig. S3. SEM images of pristine (a) and Ar&H2 plasma treated PT-30 (b), PT-60 (c) and PT-90 (d) CuAlO2

sensors. Except for 90 minitues treated sample (PT-90) with appearance of small nanodots, no obrvious change

of surface morphology was obervered via Ar&H2 plasma treatment.

 中國科學技術大學   申請論文提名獎CC - 2019 - SI - Surface oxygen vacancy defect engineering of p-CuAlO2 via Ar&H2 plasma treatment

感謝中科大的論文    沒有發(fā)完  之后我在慢慢更新吧

搡8o老女人老妇人老熟| 国偷自产视频一区二区久 | av中文码一区二区三区| 午夜一区欧美二区高清三区| 99久久精品毛片免费播放高潮| 国产+高潮+白浆+无码| 精品三级一区二区三区| 中文字幕一区在线观看视频| 台湾无码av一区二区三区| 日本19禁啪啪吃奶大尺度 | 好想被狂躁无码视频在线字幕 | 成在人线av无码免费高潮喷水| 日韩视频 中文字幕 视频一区| 日韩人妻无码精品无码中文字幕| 久久久久成人精品免费播放动漫| 五月停停开心中文字幕| 神马影院午夜dy888| 国产精久久一区二区三区 | 小少呦萝粉国产| 国内精品一区二区三区| 97在线观看播放| 色综合久久一区二区三区| 国产成人精品综合久久久久| 少妇一边呻吟一边说使劲视频| 久久www香蕉免费人成| 国产女人乱人伦精品一区二区| 9l久久午夜精品一区二区| 亚洲 日韩 激情 无码 中出| 无码超乳爆乳中文字幕久久 | 精品久久久久久久久久中文字幕| 亚洲日韩国产二区无码| 亚洲精品无码人妻无码| 一性一交一口添一摸视频| 国产精品久久精品第一页| 内射女校花一区二区三区| 岛国片人妻三上悠亚| 97人妻熟女成人免费视频色戒| 无码人妻丰满熟妇啪啪| 爱久久av一区二区三区| 亚洲无亚洲人成网站77777| 国产成人露脸自拍视频|